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Fixed-point perturbation theory and the potential 
r2 + Ar*/( 1 + gr'): 11. Construction of the solutions 
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Institute of Nuclear Physics, Czechoslovak Academy of Sciences, 250 68 Rei, 
Czechoslovakia 

Received 3 April 1984 

Abstract. We construct the asymptotic power-series expansions of the Green function and 
wavefunctions for the A r 2 / (  1 + g r 2 )  anharmonic oscillator. As a new form of the fixed-point 
perturbative formalism, the method may be extended to any band-matrix Hamiltonian 
in principle-our results illustrate its algebraic flexibility as well as a quick numerical 
convergence. 

1. Introduction 

In the harmonic-oscillator basis In), n = 0, 1, . . . , the Schrodinger eigenvalue problem 

HI)  = E$ (1.1) 
with the Hamiltonian H = H, (harmonic oscillator) + A r 2 / (  1 + gr') may be formulated 
as the linear three-term recurrence 

b k - i Z k - l + a k Z k +  b k Z k + l = O  

Z k  = ( E k  - E + A / g ) ( k l $ ) ,  

&k = 4k + 21 + 3, 
a k - I  -2gEk + 1 - A  ( A  + g E k  - g E ) - '  

bk- l  = g k l / 2 ( k + Z + ~ ) ' / ' ,  

1 = - 1,0 or 1 = 0, 1, . . . 

k = 0, 1, .  * . 

( 1.2) 

accompanied by the physical normalisability requirement or asymptotic boundary 
condition 

z ~ , , / z ~ - ~  = 1 - ( g N ) - ' l 2 +  O( 11 N ) ,  (1.3) 

2, = zobofibif,.  * b n - i f n ,  n = 1,2, . . . (1.4) 

f i 1 = a k - b 2 k f k + l  (1  3 

f ; ' = O  (1.6) 

N >> 1 

(Znojil 1983). We may also denote Z , / Z , - ~  = b,-lf , ,  i.e., 

and interpret (1.2) as the nonlinear two-term recurrences 

with an arbitrary initialisation &+,, N + CO, and with the physical requirement 

determining the bound-state energies. 
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In the eigenvalue condition (1.5) and (1.6), i.e., 

1 
1 

a ,  - bi- 
a 2 - .  . . 

O = a o - b i  

we may accelerate the continued-fractional convergence via the asymptotic estimates 
fn - h?’ -fntl  and subtractions (redefinitions) 

When performed in an iterative way, this is the essence of our fixed-point perturbation 
theory (FPPT, Znojil 1984a) in application to our particular anharmonic oscillator (1.1) 
(Znojil 1984b, hereafter referred to as I). 

In more detail, the eigenvalue condition 

1 
O = a o - b i  

a , -  . . .  
1 

with a fixed dimension parameter N < CO and FPPT series 

( 1.9) 

(1.10) 

generalises the trivial M = 0 truncation prescription (use of the finite continued- 
fractional approximants). In I, the FPPT expansion (1.10) has been shown to converge 
in the M + CO limit. 

Our present purpose is to simplify the construction of the FPPT series and to remove 
its two principal shortcomings. 

( 1 )  Ambiguity. The separate FPPT contributions h(”+;’) may be defined by the 
various non-equivalent recurrent algebraic prescriptions, differing possibly in the 
resulting rate of convergence. 

(2) Complicated structure. The perturbation contributions are roots of quadratic 
equations-they may become complex for M > MO in general. 

Our considerations will be inspired by an observation that from the practical point 
of view, many sophisticated definitions of the leading-order fixed-point approximant 
h $ i I  do not work much better than the simplest estimate (1.3) (cf, e.g., equation (3.10) 
in I). Thus, we may try to rearrange the infinite series (1.10) into as simple form as 
possible-this will be done in 9 2. In 9 3, a similar rearrangement of the product 
formula ( 1.4) for wavefunctions will generalise the first-order difference-equation 
reinterpretation of ( 1.3), 

A In ZN = In Z N  -In z N - ~  = ln[l - ( g N ) - ’ l 2 +  O( N-.’)] = - ( g N ) - ” ’ + O (  N-I)  

and its simple asymptotic solution 

( 1  . I  1 )  

Z N  exp[-2( N / g ) ’ / * ] ,  N>>1 (1.12) 

(cf e.g. Korn and Korn 1968). Finally, the whole formalism will be tested numerically 
by the evaluation of energies in § 4. 
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2. Rederivation of the Green function 

2.1. The rearrangement of the $xed-point expansion 

Let us consider the first-order FPPT prescription 

h g ' =  ( 2 b ~ b ~ - ~ ) - ' [ a ~  - ( U L - ~ ~ N ~ N - , ) " ~ ]  (2.1) 

(I, equation (3.12)) and expand it in the powers of N - '  in the N >> 1 asymptotic region. 
Immediately, we shall find that 

(2.2) 

This is due to the leading-order cancellations taking place in the square-rooted paren- 
thesis in (2.1). Similar cancellations do  not appear in h g ) ,  h f ? ,  . . . , so that the general 
FPFT expansion will have the asymptotic structure 

h ( 0 )  - - constant N- '  +constant' ( N J N ) - '  + . . .. 

constant N-' +constant' N-3'2+ constant" N - 2  + constant'" NP5I2 + . . . (2.3) 

and we may write, with an arbitrary shift of the indices 6, 

5 

f k =  9 m ( k + 6 ) - 1 - m ' 2  (2.4) 
m=O 

2.2. A power-series solution of the nonlinear recurrences for fn 

It is not necessary to derive (2.4) from (1.10). Indeed, once we derive the structure 
(2.3) of from its FPPT background (cf (2.1) and I) ,  we may employ (2.4) simply 
as an ansatz solving the recurrences (1.5),  and require that fi') = 0 in (1.8) identically. 

It is a rather cumbersome algebra to find the sequence (P,, in general. Fortunately 
the present three-term character as well as the simple form of coefficients in (1.2) may 
be employed. 

In the first step, we introduce the denotation 

p 2 = k + S ,  

ak = 2g,9-2 + p + y p 2 ,  

8 =4(21+3 - E +Ag-') 

b i  = g ' ~ - ~ +  p.p-'+ U, 
(2.5) 

p = g2[ 1 + f( E - h g - I ) ]  = -$A /3 = 1 +i(gE - A ) ,  
u,l 2 - 2 -  

g ,  

4P g g2(;1+i)2 

which simplifies the recurrences (1.5) in the asymptotic region. Next, we recall the 
easily obtainable identities 

(PI ( P 2  
Qm \ 

. . .  
m = 1,2, .  . . (2.6) . . .  +m =m+l det 

(PO 
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t = O  

and insert them into ( 1  S). Finally, the term-by-term comparison of coefficients at the 
same powers of p generates the sequence of restrictions 

m = 0 ,  PO' = 2 g  - g2Q0 

/ QI Qm \ 
(2.8) 

I \ 0 * . .  QI I 

-g2Dm - pDm-2 - vDm-4, 

imposed on the coefficients qn in (2.4). 

root 

D-, = D-2 =. , . = 0 

From the first m = 0 item, we get the degenerate quadratic equation with a unique 

Qo=g- ' .  (2.9) 

= -g-3'2 (2.10) 

For m = 1 ,  (2.8) becomes an algebraic identity. The next m = 2 item defines 

where the sign is not unique but it must be chosen in accord with the normalisability 
requirement (1.3). 

Starting from m = 3, we may observe that the pm x constant components cancel and 
drop out of (2.8). Thus, we may eliminate 

p2 = is-'+$( 1 - E + Ag-')g-' (2.1 1 )  

etc. In general, the algebraic definition (2.8) of Q ~ - ~  in terms of Q,,,-~, Q, , -~ ,  . . . has 
the explicit and linear recurrent form 

/ PI ~2 . . .  ~ m - 2  0 O \  

(2.12) \ o  0 . . .  0 Qo QI / 

m = 3 , 4  , . . . ,  M. 

In this way, our construction of the modified FPPT series with the power-law dependence 
on the index k or k + 6 is completed. 



Fixed point perturbation theory: I I  3453 

3. Resummation of the wavefunctions 

We may insert expansion (2.7) into the definition (1.4) of CC, and, in the spirit of the 
Trotter formula for exponentials, rearrange this product also into an expansion 

(nl+)= (- l )"cl(n+ 8)'2exp ( n  + 61'3 c4+,/(n+6)"'/' ) . (3.1) 

The coefficients ci may then be determined from the consistency of (3.1) with the 
recurrence (1.2)-this idea has been used recently by Richardson and Blankenbecler 
(1979) in a somewhat different context. 

In the present case, the coefficients ci may be obtained also immediately from 
(1.4)-we put 

oc. 

( m=O 

( n +  ll+)/(nl+)= - ( n + s ) b J n + l / ( n + l + 6 )  (3.2) 

and insert (2.7) and (3.1) on the right- and left-hand sides, respectively. Then, it is 
sufficient to compare the expressions at the same powers of ( n  + S)-1 /2 .  

3.1. Recurrences as a diflerence equation 

In an alternative and direct formulation, the resummation (3.1) of 4 may be based on 
(1.2) rewritten as an equation 

bk- lt[k (k)  - 11 - ak([p (k) l+ bk5b (k)  + 11 = 0 k = 0,1, .  . . (3.3) 

for the smooth functions ( ( p )  = 
variable p = p (k)  + f l  + :. 

of the shifted and presumably continuous 

In the first step, we replace 5(p  * 1)  by the Taylor series 

5 ( P  * 1) = 5 ( P )  * 5 ' ( P ) +  (1/2!)5"(P) *.  . . = e x p ( * d / d p ) t b )  

and decompose the coefficients in (3.3) into the odd and even functions of p. Then, 
with the abbreviations 

y = f ( l + 4 ) ' ,  2 1/2 
p* = p *t  P* = ( 1  - Y / P * )  , 

P = P i - + @ - ,  s inh(d /dp)=d/dp+(1/3! )d3/dp3+.  . . 
etc, we get 

from (3.3). 

p >> 1 (cf (1.12)). Hence, the derivatives 
In the next step, we put [ ( p )  = exp x(p)  and notice that Ix(p)l= O(p1/2)<< p for 

5' = x'5, 

5'= 0 ( 5 / W ' ' * ) ,  5" = . . . 

5" = (x'2 + x")& 5"'="'~"~""+~' ' ' )~,  . , . 
form a decreasing sequence for a sufficiently large p, 
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and we may treat (3.4) as a nonlinear differential equation (of an infinite order) for 
the functions ~ ’ ( p )  (x drops out). We may solve it simply by the power-law series ansatz 

(3.5) dm 
x ’ ( p ) =  c m/z 

, = I  p 

The step-by-step comparison of coefficients at the increasing powers of j . ~ ” ~  gives 
immediately the solution d ,  again. 

3.2. FPPT as diferential equations 

As an illustration of the necessary algebra, let us neglect the O ( / L 5 )  components in 
(3.4). Such a truncation converts (3.4) (in the p >> 1 asymptotic region) into the linear 
differential equation of the eighth order, 

(3.6) 

or, subsequently, into a nonlinear differential equation for the derivative of x. Finally, 
via (3.5), we arrive at an explicit algebraic hierarchy of definitions of the coefficients 
d,  for n = 1,2, .  . . , 8 .  

For the determination of dl ,  it suffices to use the simplest non-trivial truncation of 
(3.41, 

x ” + x ‘ 2 =  (gp)-I+o(p-3/2). 

dl = -g- 1/2 

The insertion of (3.5) gives d :  = g-’ and we choose the negative sign, 

(3.8) 

for the normalisable solutions. 

implies immediately that 
In the next asymptotic order, we have to include only the term e‘p-.’ in (3.7). This 

(3.9) 
On the forthcoming level of precision, we must consider the differential equation 

(3.10) 

d --I 2 - 4. 

of the fourth order 

&‘4’ + ( (2 )  + cL-lp) = [(gCL)-’+(r-A/4g2)~-215 

and its nonlinear counterpart 

XI’+ x ’ 2  + p - I x ’ +  hx’4 = (gFu)-’+(r-A/4g2)/.-2 (3.1 1) 

with an O(p-5 ’2)  error term. We get 

d3 =+g”’[(A +f)g-2 - I (  1 + l)]. (3.12) 
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Finally, it is sufficient to add i5(3)p-1 to (3.10) or 4,y’”y’’f~pCL-’,yf3 to (3.1 1 )  and the 

d4=&g[(l  -A)g-2+I(l+ l)] (3.13) 

follows. 
We shall stop our algebraic manipulations here since their general pattern becomes 

obvious now: in the (2k- 1)th step, we must incorporate the 2kth derivatives of [ ( p ) .  
The final formula has the form 

fifth-order coefficient 

(3.14) 

In the old notation, the above fifth-order FPPT asymptotic expansion of our 
wavefunctions reads 

x exp{[ -;(A + i)g-3/2 + fZ( I + 1)g’/2]~;i/2} 

xexp{[$(A - l)g-’-:gl(I+ l ) ]~ ; ’}  xexp O(&n3I2). (3.15) 

This is a quite simple formula. 

(pa. From (3.2), we get the exponential formula 

f n + l  = ( 1  - 4 / ~ , + ~ ) ~ / ~ b ; ~  exp{-4/[Ji(G+JE,.,)1} 

Equation (3.15) may be used also in a rederivation of (2.7) up to the coefficient 

- -  - 
x exp{-4d3/ [&JE,+ i ( 4 6 ,  + J E n +  i 11) 

x exp(-4d,/~,~,+I) e x p [ O ( ~ ; ~ / ~ ) l .  (3.16) 

Its explicit energy-independence contrasts with (2.7) but is in full accord with the 
strong asymptotic suppression of E in the matrix elements a k  in (1.2) or (1.5). 

4. Energies 

In principle, a quickly convergent and numerically stable computational scheme for 
energies may be based on the FPPT secular equation (1.9) complemented by the FPPT 

asymptotic expansion (1.10) of the auxiliary ‘effective interaction’ quantity fN+, as 
discussed in I. In practice, the recurrently specified prescriptions (2.7) and (2.12) 
simplify the computer coding and the other technicalities. Thus, we may employ any 
small computer and control the precision of energies (zeros off;’) in two ways-by 
our choice of the model-space dimension N, and by the order M of our FPPT approxima- 
tion, i.e., number of terms retained in (2.7). 

In table 1, a sample of results is displayed. In accord with most of the literature, 
we consider the one-dimensional problem ( 1  . l )  with even parity ( I  = - 1)  and with the 
following parameters: 

(A) A = 0.1, g = 100, E,,,,= 1.000 841 100 (Bessis and Bessis 1980), 
(B) A = 1, g = 10, E,,,,, = 1.059 290 (Mitra 1978), 
( C )  A = 10, g = 1, E,,,,, = 2.782 330 (Mitra 1978), 
(D) A = 100, g = 0.1, E,,,,, =9.976 180 088 (Znojil 1983), 
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(E) A = g = 1, E,,,,, = 1.232 350 740 (Znojil 1983), 
(F) A = g = 10, E,,,,, = 1.580 020 (Mitra 1978), 
(G) A = g = 100, Eexact= 1.836 380 500 (Znojil 1983), 
(H) A = g = 100, E,,,,, = 5.928 (Mitra 1978, excited state). 

These examples lead to the following observations. 
(i)  For M = 0, the zero-order FPPT approximation is defined as trivial, fN+, = 0. It 

corresponds in effect to the N-dimensional truncation and standard numerical 
diagonalisation of the matrix. For the ground-state energy, we obtain the rigorous 
(variational) upper bound which converges to E,,,,, with the increasing N (see A). 

(ii) With increasing FPFT order M, we may notice a ‘bracketing’ (majorisa- 
tion/minorisation) property of the neighbouring approximants. Its geometric origin 
has been clarified in I. In examples B and C, it enables us also to estimate roughly 
the round-off error as contained in the less precise values E,,,,, of Mitra (1978). 

(iii) Our FPPT energies converge with increasing M not only for ( g N ) - ’ < <  1, but 
also far beyond this ‘natural’ domain of convergence (cf e.g., D in the table). 

Table 1. Convergence of energies-a sample of deviations (Ecompu,ed-Eexac,) x IO9 in the 
Mth  perturbative order and N-dimensional model space. 

N 2 3 4 
Example M 

A 0 37 591 29 548 24 426 
1 -9713 -9064 -8513 
2 -80 -32 -8 
3 -318 -216 -157 

N 25 50 75 

A 0 4734 1987 977 
1 -3491 -1669 -915 
2 10 3 1 
3 -9 -2 -0.5 

N 10 15 20 

B 0 475 645 200 379 96 735 
1 -483 663 -205 025 -97 665 
2 14 139 6182 3626 
3 -1446 +831 t1421 

N 10 20 30 

C 0 758 636 I6 215 423 
I -235 861 -3255 f96 
2 184 125 479 1 +600 
3 -78 662 f459 +so5 

N 15 20 25 30 50 

D 0 - 1 1  799 -1996 -316 -53 -0.047 
1 -1 1 205 -1843 -313 -49 -0.039 
2 -1 1 419 -1880 -307 -49 - 
3 -10613 -1746 -282 -46 - 
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Table 1. (continued) 

10 20 30 

E -1 -31 816 -175 -13 
0 12 223 74 -8 
1 -14 257 -106 -12 
2 1689 -2 -10 
3 -347 - I  I -10 

N 30 40 50 

F 0 335 145 117 979 46917 

2 15 361 5096 2207 
3 -45 1 +339 +53 I 

I -313 242 -110481 -43 476 

N 20 50 100 500 
~~ ~~~ 

G 0 5895 986 21 10 481 577 913 60 1 
1 -3607 723 -1813398 -1001 019 -18 557 
2 339 924 100691 9367 -3060 
3 -42 760 -7 871 -5056 -4932 

H 0 78 510 22 903 2075 
1 1279 096 -625 476 +I415 
2 -1 17 765 -16 110 +2002 
3 4004 2048 2197 

(iv) At a fixed M, say, M = 1, our approximants seem to form the energy bounds 
(lower, ‘antivariational’ for M = 1)  not only at N >> 1, but also in a ‘non-asymptotic’ 
domain (say, for N = 0 ( 1 0 ) ) .  Thus, the lower bounds of Znojil (1983) may be 
interpreted as a ‘ M  = -1’ item in table 1 (see E). 

(v) The FPPT convergence deteriorates for large A (see E-G). This may be com- 
pensated easily by our choice of a larger dimension N or order M. The precision of 
our M = 3 energies compares favourably with the other methods in a wide range of 
anharmonicities. For example, our M = 3 and N = 4 result A reproduces the precision 
of the M = -1 and N = 300 value as obtained in Znojil (1983). 

(vi) The precision of energies seems to increase for the excited states (see H).  This 
is not yet fully understood. 

5. Summary 

We have reformulated the algebraic constructions of I and arrived at an extremely 
compact form of the corresponding solution of (1.1). Due to an analytic simplicity of 
the new higher-order FPFT corrections, their direct use seems to be a vital improvement 
of the older (truncation and/or majorisation and minorisation) algorithms. Its numeri- 
cal tests confirm the particular practical efficiency of the FPPT formulae, especially for 
the large couplings. 
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Complementing the more or less geometric considerations of I, our main idea was 
now to employ the knowledge of the asymptotic behaviour of fN+, (‘effective Hamil- 
tonian’) in a direct solution of recurrences via the related power-series ansatz. It has 
a broader methodical significance-its further applications are under current investiga- 
tion at present. 
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